Determinants of specific binding of HMGB1 protein to hemicatenated DNA loops.
نویسندگان
چکیده
Protein HMGB1 has long been known as one of the most abundant non-histone proteins in the nucleus of mammalian cells, and has regained interest recently for its function as an extracellular cytokine. As a DNA-binding protein, HMGB1 facilitates DNA-protein interactions by increasing the flexibility of the double helix, and binds specifically to distorted DNA structures. We have previously observed that HMGB1 binds with extremely high affinity to a novel DNA structure, hemicatenated DNA loops (hcDNA), in which double-stranded DNA fragments containing a tract of poly(CA).poly(TG) form a loop maintained at its base by a hemicatenane. Here, we show that the single HMGB1 domains A and B, the HMG-box domain of sex determination factor SRY, as well as the prokaryotic HMGB1-like protein HU, specifically interact with hcDNA (Kd approximately 0.5 nM). However, the affinity of full-length HMGB1 for hcDNA is three orders of magnitude higher (Kd<0.5 pM) and requires the simultaneous presence of both HMG-box domains A and B plus the acidic C-terminal tail on the molecule. Interestingly, the high affinity of the full-length protein for hcDNA does not decrease in the presence of magnesium. Experiments including a comparison of HMGB1 binding to hcDNA and to minicircles containing the CA/TG sequence, binding studies with HMGB1 mutated at intercalating amino acid residues (involved in recognition of distorted DNA structures), and exonuclease III footprinting, strongly suggest that the hemicatenane, not the DNA loop, is the main determinant of the affinity of HMGB1 for hcDNA. Experiments with supercoiled CA/TG-minicircles did not reveal any involvement of left-handed Z-DNA in HMGB1 binding. Our results point to a tight structural fit between HMGB1 and DNA hemicatenanes under physiological conditions, and suggest that one of the nuclear functions of HMGB1 could be linked to the possible presence of hemicatenanes in the cell.
منابع مشابه
Binding of Histone H1 to DNA Is Differentially Modulated by Redox State of HMGB1
HMGB1 is an architectural protein in chromatin, acting also as a signaling molecule outside the cell. Recent reports from several laboratories provided evidence that a number of both the intracellular and extracellular functions of HMGB1 may depend on redox-sensitive cysteine residues of the protein. In this study we demonstrate that redox state of HMGB1 can significantly modulate the ability o...
متن کاملA High-Sensitivity Method for Detection and Measurement of HMGB1 Protein Concentration by High-Affinity Binding to DNA Hemicatenanes
BACKGROUND Protein HMGB1, an abundant nuclear non-histone protein that interacts with DNA and has an architectural function in chromatin, was strikingly shown some years ago to also possess an extracellular function as an alarmin and a mediator of inflammation. This extracellular function has since been actively studied, both from a fundamental point of view and in relation to the involvement o...
متن کاملUp-regulation of TLR2 and TLR4 in high mobility group Box1-stimulated macrophages in pulpitis patients
Objective(s): High Mobility Group Box1 (HMGB1) is a nonhistone, DNA-binding protein that serves a crucial role in regulating gene transcription and is involved in a variety of proinflammatory, extracellular activities. The aim of this study was to explore whether HMGB1 stimulation can up-regulate the expression of Toll-like Receptor 2 (TLR2) and Toll-like Receptor 4 (TLR4) on macrophages from p...
متن کاملRapid purification of HU protein from Halobacillus karajensis
The histone-like protein HU is the most-abundant DNA-binding protein in bacteria. The HU protein non-specifically binds and bends DNA as a hetero- or homodimer, and can participate in DNA supercoiling and DNA condensation. It also takes part in DNA functions such as replication, recombination, and repair. HU does not recognize any specific sequences but shows a certain degree of specificity to ...
متن کاملPriming Hepatitis B Surface (HBsAg)- and Core Antigen (HBcAg)-Specific Immune Responses by Chimeric, HBcAg with a HBsAg ‘a’ Determinant
We developed an immunogen to stimulate multivalent immunity against hepatitis B surface antigen (HBsAg) and hepatitis B core antigens (HBcAg). Immune responses specific for both HBsAg and HBcAg play an important role in controlling the infection. HBsAg-specific antibodies mediate elimination of virions at an early stage of infection and prevent the spread of virus. The immunogen was constructed...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of molecular biology
دوره 353 4 شماره
صفحات -
تاریخ انتشار 2005